Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vasc Surg ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38458361

RESUMEN

OBJECTIVE: To investigate the risk factors for major limb adverse events (MALE) in peripheral arterial disease (PAD) combined with frailty and to develop and validate a risk prediction model of MALE. METHODS: This prospective study was performed in the vascular surgery department of patients in six hospitals in southwest China. Prospective collection of patients with PAD combined with frailty from February 1 to December 20, 2021, with MALE as the primary outcome, and followed for 1 year. The cohort was divided into a development cohort and a validation cohort. In the development cohort, a multivariate risk prediction model was developed to predict MALE using random forests for variable selection and multivariable Cox regression analysis. The model is represented by a visualized nomogram and a web-based calculator. The model performance was tested with the validation cohort and assessed using the C-statistic and calibration plots. RESULTS: A total of 1179 patients were prospectively enrolled from February 1 to December 20, 2021. Among 816 patients with PAD who were included in the analysis, the median follow-up period for this study was 9 ± 4.07 months, the mean age was 74.64 ± 9.43 years, and 249 (30.5%) were women. Within 1 year, 222 patients (27.2%) developed MALE. Target lesion revascularizations were performed in 99 patients (12.1%), and amputations were performed in 131 patients (16.1%). The mortality rate within the whole cohort was 108 patients (13.2%). After controlling for competing risk events (death), the cumulative risk of developing MALE was not statistically different. Prealbumin (hazard ratio [HR], 0.6; 95% confidence interval [CI], 0.41-0.89; P = .010), percutaneous coronary intervention (HR, 2.31; 95% CI, 1.26-4.21; P = .006), Rutherford classification (HR, 1.77; 95% CI, 1.36-2.31; P < .001), white blood cell (HR, 1.85; 95% CI, 1.20-2.87; P = .005), high altitude area (HR, 3.1; 95% CI, 1.43-6.75; P = .004), endovascular treatment (HR, 10.2; 95% CI, 1.44-72.5; P = .020), and length of stay (HR, 1.01; 95% CI, 1.00-1.03; P = .012) were risk factors for MALE. The MALE prediction model had a C-statistic of 0.76 (95% CI, 0.70-0.79). The C-statistic was 0.68 for internal validation and 0.66 for external validation for the MALE prediction model. The MALE prediction model for PAD presented an interactive nomogram and a web-based network calculator. CONCLUSIONS: In this study, the MALE prediction model has a discriminative ability to predict MALE among patients with PAD in frailty. The MALE model can optimize clinical decision-making for patients in PAD with frailty.

2.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068963

RESUMEN

The jacalin-related lectins (JRLs) are widely distributed in plants and are involved in plant development and multiple stress responses. However, the characteristics of the HvJRL gene family at the genome-wide level and the roles of JRLs in barley's response to low-nitrogen (LN) stress have been rarely reported. In this study, 32 HvJRL genes were identified and unevenly distributed at both ends of the seven chromosomes in barley. HvJRL proteins generally exhibited low sequence similarity but shared conserved jacalin domains by multiple sequence analysis. These proteins were classified into seven subfamilies based on phylogenetic analysis, with a similar gene structure and conserved motifs in the same subfamily. The HvJRL promoters contained a large number of diverse cis-elements associated with hormonal response and stress regulation. Based on the phylogenetic relationships and functionally known JRL homologs, it was predicted that some HvJRLs have the potential to serve functions in multiple stress responses but not nutrition deficiency stress. Subsequently, nine differentially expressed genes (DEGs) encoding eight HvJRL proteins were identified in two barley genotypes with different LN tolerance by transcriptome analysis. Furthermore, 35S:HvHorcH transgenic Arabidopsis seedlings did enhance LN tolerance, which indicated that HvHorcH may be an important regulator of LN stress response (LNSR). The HvJRL DEGs identified herein could provide new candidate genes for LN tolerance studies.


Asunto(s)
Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Lectinas/metabolismo , Hordeum/metabolismo , Nitrógeno/metabolismo , Filogenia , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
3.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298691

RESUMEN

Improvement of low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) in crops is imperative for environment-friendly agriculture development. The basic helix-loop-helix (bHLH) transcription factors are involved in multiple abiotic stresses and are suitable as candidate genes for improving LN tolerance. Few studies were performed on the characterization of the HvbHLH gene family and their function in response to LN stress in barley. In this study, 103 HvbHLH genes were identified through genome-wide analysis. HvbHLH proteins were classified into 20 subfamilies based on phylogenetic analysis in barley, which was supported by conserved motifs and gene structure analysis. The stress-related cis-element analysis in the promoters showed that HvbHLHs are probably involved in multiple stress responses. By phylogenetic analysis of HvbHLHs and bHLHs in other plants, some HvbHLHs were predicted to play roles in response to nutrition deficiency stress. Furthermore, at least 16 HvbHLHs were differentially expressed in two barley genotypes differing in LN tolerance under LN stress. Finally, overexpression of HvbHLH56 enhanced LN stress tolerance in transgenic Arabidopsis, suggesting it is an important regulator in LN stress response. The differentially expressed HvbHLHs identified herein may be valuable for the breeding of barley cultivars with LN tolerance.


Asunto(s)
Arabidopsis , Hordeum , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hordeum/metabolismo , Arabidopsis/metabolismo , Nitrógeno/metabolismo , Filogenia , Fitomejoramiento , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
4.
BMC Genomics ; 23(1): 753, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384450

RESUMEN

BACKGROUND: Continuous tilling and the lateral growth of rhizomes confer rhizomatous grasses with the unique ability to laterally expand, migrate and resist disturbances. They play key roles especially in degraded grasslands, deserts, sand dunes, and other fragile ecological system. The rhizomatous plant Leymus secalinus has both rhizome buds and tiller buds that grow horizontally and upward at the ends of rhizome differentiation and elongation, respectively. The mechanisms of rhizome formation and differentiation in L. secalinus have not yet been clarified. RESULTS: In this study, we found that the content of gibberellin A3 (GA3) and indole-3-acetic acid (IAA) were significantly higher in upward rhizome tips than in horizontal rhizome tips; by contrast, the content of methyl jasmonate and brassinolide were significantly higher in horizontal rhizome tips than in upward rhizome tips. GA3 and IAA could stimulate the formation and turning of rhizomes. An auxin efflux carrier gene, LsPIN1, was identified from L. secalinus based on previous transcriptome data. The conserved domains of LsPIN1 and the relationship of LsPIN1 with PIN1 genes from other plants were analyzed. Subcellular localization analysis revealed that LsPIN1 was localized to the plasma membrane. The length of the primary roots (PRs) and the number of lateral roots (LRs) were higher in Arabidopsis thaliana plants overexpressing LsPIN1 than in wild-type (Col-0) plants. Auxin transport was altered and the gravitropic response and phototropic response were stronger in 35S:LsPIN1 transgenic plants compared with Col-0 plants. It also promoted auxin accumulation in root tips. CONCLUSION: Our findings indicated that LsPIN1 plays key roles in auxin transport and root development. Generally, our results provide new insights into the regulatory mechanisms underlying rhizome development in L. secalinus.


Asunto(s)
Arabidopsis , Rizoma , Rizoma/metabolismo , Ácidos Indolacéticos/metabolismo , Poaceae/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
5.
Microorganisms ; 10(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296291

RESUMEN

Broussonetia papyrifera has a high lignocellulose content leading to poor palatability and low digestion rate of ruminants. Thus, dynamic profiles of fermentation lignocellulose characteristics, microbial community structure, potential function, and interspecific relationships of B. papyrifera mixing with wheat bran in different ratios: 100:0 (BP100), 90:10 (BP90), 80:20 (BP80), and 65:35 (BP65) were investigated on ensiling days 5, 15, 30, and 50. The results showed that adding bran increased the degradation rate of hemicellulose, neutral detergent fiber, and the activities of filter paper cellulase, endoglucanase, acid protease, and neutral protease, especially in the ratio of 65:35. Lactobacillus, Pediococcus, and Weissella genus bacteria were the dominant genera in silage fermentation, and Pediococcus and Weissella genus bacteria regulated the process of silage fermentation. Compared with monospecific B. papyrifera silage, adding bran significantly increased the abundance of Weissella sp., and improved bacterial fermentation potential in BP65 (p < 0.05). Distance-based redundancy analysis showed that lactic acid bacteria (LAB) were significantly positive correlated with most lignocellulose content and degrading enzymes activities, while Monascus sp. and Syncephalastrum sp. were opposite (p < 0.05). Co-occurrence network analysis indicated that there were significant differences in microbial networks among different mixing ratios of B. papyrifera silage prepared with bran. There was a more complex, highly diverse and less competitive co-occurrence network in BP65, which was helpful to silage fermentation. In conclusion, B. papyrifera ensiled with bran improved the microbial community structure and the interspecific relationship and reduced the content of lignocellulose.

6.
BMC Plant Biol ; 22(1): 270, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655135

RESUMEN

BACKGROUND: Cold stress is one of the main abiotic stresses limiting cucumber (Cucumis sativus L.) growth and production. C-repeat binding factor/Dehydration responsive element-binding 1 protein (CBF/DREB1), containing conserved APETALA2 (AP2) DNA binding domains and two characteristic sequences, are key signaling genes that can be rapidly induced and play vital roles in plant response to low temperature. However, the CBF family has not been systematically elucidated in cucumber, and the expression pattern of this family genes under cold stress remains unclear. RESULTS: In this study, three CsCBF family genes were identified in cucumber genome and their protein conserved domain, protein physicochemical properties, gene structure and phylogenetic analysis were further comprehensively analyzed. Subcellular localization showed that all three CsCBFs were localized in the nucleus. Cis-element analysis of the promoters indicated that CsCBFs might be involved in plant hormone response and abiotic stress response. Expression analysis showed that the three CsCBFs could be significantly induced by cold stress, salt and ABA. The overexpression of CsCBFs in cucumber seedlings enhanced the tolerance to cold stress, and importantly, the transcript levels of CsCOR genes were significantly upregulated in 35S:CsCBFs transgenic plants after cold stress treatment. Biochemical analyses ascertained that CsCBFs directly activated CsCOR genes expression by binding to its promoter, thereby enhancing plant resistance to cold stress. CONCLUSION: This study provided a foundation for further research on the function of CsCBF genes in cold stress resistance and elucidating its mechanism.


Asunto(s)
Cucumis sativus , Respuesta al Choque por Frío/genética , Cucumis sativus/genética , Cucumis sativus/metabolismo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
7.
Plant Physiol Biochem ; 168: 516-525, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34794100

RESUMEN

Salinity stress severely affects plant growth and crop productivity. FCS-like zinc finger family genes (FLZ) play important roles in plant growth and stress responses. But most information of this family obtained was involved in sucrose signaling, limited function has been known in response to salinity stress. In this study, a novel FLZ gene TaFLZ2D has been isolated and characterized in response to salinity stress in wheat. TaFLZ2D was induced by both salinity stress and exogenous abscisic acid (ABA). Its transcript level was substantially higher in the salt resistant wheat cultivar SR3 than in its closely related but salt sensitive cultivar JN177. Transient expression in Nicotiana benthamiana leaf epidermal cells demonstrated TaFLZ2D was localized both in the cytoplasm membrane and nucleus. Constitutive expression of TaFLZ2D in Arabidopsis thaliana improved salinity stress tolerance and ABA sensitivity. Phenotype analysis under KCl and mannitol treatment demonstrated TaFLZ2D increased salinity stress tolerance mainly due to the superior ability to cope with ionic stress. TaFLZ2D over-expressing lines increased abscisic acid synthesis, peroxidase activity and reduced rate of water loss. Transcriptomic analysis demonstrated over-expression of TaFLZ2D regulated ABA-dependent and independent signaling pathway related genes expression and activated antioxidant related genes expression under normal condition and Ca2+ signaling related genes expression under NaCl treatmemt. Taken together, TaFLZ2D is a positive regulator of salinity stress tolerance, which contributes to salinity stress mainly through superior ability for ionic stress tolerance and ROS detoxification.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Ácido Abscísico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Tolerancia a la Sal
8.
Front Genet ; 12: 663941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093656

RESUMEN

Soil salinity is a serious threat to wheat yield affecting sustainable agriculture. Although salt tolerance is important for plant establishment at seedling stage, its genetic architecture remains unclear. In the present study, we have evaluated eight salt tolerance-related traits at seedling stage and identified the loci for salt tolerance by genome-wide association study (GWAS). This GWAS panel comprised 317 accessions and was genotyped with the wheat 90 K single-nucleotide polymorphism (SNP) chip. In total, 37 SNPs located at 16 unique loci were identified, and each explained 6.3 to 18.6% of the phenotypic variations. Among these, six loci were overlapped with previously reported genes or quantitative trait loci, whereas the other 10 were novel. Besides, nine loci were detected for two or more traits, indicating that the salt-tolerance genetic architecture is complex. Furthermore, five candidate genes were identified for salt tolerance-related traits, including kinase family protein, E3 ubiquitin-protein ligase-like protein, and transmembrane protein. SNPs identified in this study and the accessions with more favorable alleles could further enhance salt tolerance in wheat breeding. Our results are useful for uncovering the genetic mechanism of salt tolerance in wheat at seeding stage.

9.
Plants (Basel) ; 10(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573193

RESUMEN

Salinity is one of the limiting factors of wheat production worldwide. A total of 334 internationally derived wheat genotypes were employed to identify new germplasm resources for salt tolerance breeding. Salt stress caused 39, 49, 58, 55, 21 and 39% reductions in shoot dry weight (SDW), root dry weight (RDW), shoot fresh weight (SFW), root fresh weight (RFW), shoot height (SH) and root length (RL) of wheat, respectively, compared with the control condition at the seedling stage. The wheat genotypes showed a wide genetic and tissue diversity for the determined characteristics in response to salt stress. Finally, 12 wheat genotypes were identified as salt-tolerant through a combination of one-factor (more emphasis on the biomass yield) and multifactor analysis. In general, greater accumulation of osmotic substances, efficient use of soluble sugars, lower Na+/K+ and a higher-efficiency antioxidative system contribute to better growth in the tolerant genotypes under salt stress. In other words, the tolerant genotypes are capable of maintaining stable osmotic potential and ion and redox homeostasis and providing more energy and materials for root growth. The identified genotypes with higher salt tolerance could be useful for developing new salt-tolerant wheat cultivars as well as in further studies to underline the genetic mechanisms of salt tolerance in wheat.

10.
BMC Plant Biol ; 19(1): 68, 2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744569

RESUMEN

BACKGROUND: Development of crop cultivars with high low nitrogen (LN) tolerance or nitrogen use efficiency (NUE) is imperative for sustainable agriculture development. Tibetan wild barley is rich in genetic diversity and may provide elite genes for LN tolerance improvement. Little has been known about transcriptional responses of the wild barley to chronic LN stress. RESULTS: In this study, transcriptomic profiling of two Tibetan wild barley genotypes, LN- tolerant XZ149 and LN-sensitive XZ56 has been conducted using RNA-Seq to reveal the genotypic difference in response to chronic LN stress. A total of 520 differentially expressed genes (DEGs) were identified in the two genotypes at 12 d after LN stress, and these DEGs could be mainly mapped to 49 metabolism pathways. Chronic LN stress lead to genotype-dependent responses, and the responsive pattern in favor of root growth and stress tolerance may be the possible mechanisms of the higher chronic LN tolerance in XZ149. CONCLUSION: There was a distinct difference in transcriptional profiling between the two wild barley genotypes in response to chronic LN stress. The identified new candidate genes related to LN tolerance may cast a light on the development of cultivars with LN tolerance.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hordeum/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Hordeum/genética , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología , Tibet
11.
BMC Plant Biol ; 18(1): 187, 2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30200885

RESUMEN

BACKGROUND: Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS: In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS: LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.


Asunto(s)
Adaptación Fisiológica , Hordeum/metabolismo , Potasio/metabolismo , Metaboloma , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Estrés Fisiológico
12.
BMC Genomics ; 19(1): 81, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370751

RESUMEN

BACKGROUND: The interest has been increasing on the phenolic compounds in plants because of their nutritive function as food and the roles regulating plant growth. However, their underlying genetic mechanism in barley is still not clear. RESULTS: A genome-wide association study (GWAS) was conducted for total phenolic content (TPC), total flavonoid content (FLC) and antioxidant activity (AOA) in 67 cultivated and 156 Tibetan wild barley genotypes. Most markers associated with phenolic content were different in cultivated and wild barleys. The markers bPb-0572 and bPb-4531 were identified as the major QTLs controlling phenolic compounds in Tibetan wild barley. Moreover, the marker bPb-4531 was co-located with the UDP- glycosyltransferase gene (HvUGT), which is a homolog to Arabidopsis UGTs and involved in biosynthesis of flavonoid glycosides . CONCLUSIONS: GWAS is an efficient tool for exploring the genetic architecture of phenolic compounds in the cultivated and Tibetan wild barleys. The DArT markers applied in this study can be used in barley breeding for developing new barley cultivars with higher phenolics content. The candidate gene (HvUGT) provides a potential route for deep understanding of the molecular mechanism of flavonoid synthesis.


Asunto(s)
Antioxidantes/metabolismo , Flavonoides/metabolismo , Marcadores Genéticos , Hordeum/genética , Proteínas de Plantas/genética , Polifenoles/metabolismo , Sitios de Carácter Cuantitativo , Estudio de Asociación del Genoma Completo , Genotipo , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Filogenia , Polimorfismo Genético
13.
Plant Physiol Biochem ; 111: 257-265, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27951495

RESUMEN

In a previous study, we identified the low-nitrogen (LN) tolerant accessions from the Tibetan wild barley (Hordeum vulgare subsp. spontaneum). In this study, two wild barley genotypes (XZ149, LN-tolerant and XZ56, LN-sensitive) and a barley cultivar ZD9 (H. vulgare) were used to determine the LN tolerant mechanism underlying the wild barley in the ionomic and physiological aspects. XZ149 exhibited higher LN tolerance with highest relative dry weight and N accumulation among three barley genotypes under LN stress. When exposed to LN stress, XZ149 had more N transportation from roots to leaves, and remained relatively higher activities of nitrate reductase (NR, EC.1.7.1.1) and glutamine synthetase (GS, EC.6.3.1.2) in leaves than other two genotypes, ensuring its higher capacity of N assimilation and utilization. The ionome analysis showed that LN stress had a significant effect on tissue ionome and the effect was genotypic and tissue-specific difference. On the whole, XZ149 maintained more stable Mn and Cu contents in roots, and less reduction of root P, K and Ca contents than XZ56 and ZD9 when exposed to LN stress. It may be assumed that more N movement into shoots, greater N assimilating capacity and specific rearrangement of nutrient element levels in tissues under LN stress are attributed to LN tolerance in XZ149.


Asunto(s)
Hordeum/fisiología , Metabolómica , Nitrógeno/farmacología , Estrés Fisiológico/efectos de los fármacos , Genotipo , Glutamato-Amoníaco Ligasa/metabolismo , Hordeum/efectos de los fármacos , Hordeum/genética , Hordeum/crecimiento & desarrollo , Iones/metabolismo , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/fisiología , Análisis de Componente Principal , Solubilidad
14.
J Plant Physiol ; 206: 59-67, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27693987

RESUMEN

Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Hidroponía , Metabolómica/métodos , Nitrógeno/farmacología , Estrés Fisiológico/efectos de los fármacos , Biomasa , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Análisis por Conglomerados , Genotipo , Hordeum/efectos de los fármacos , Hordeum/genética , Redes y Vías Metabólicas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Análisis de Componente Principal , Factores de Tiempo
15.
BMC Plant Biol ; 16: 30, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26817455

RESUMEN

BACKGROUND: Nitrogen (N) is the most common limiting factor for crop productivity worldwide. An effective approach to solve N deficiency is to develop low N (LN) tolerant crop cultivars. Tibetan annual wild barley is well-known for its wide genetic diversity and high tolerance to poor soil fertility. Up to date, no study has been done to illustrate the mechanism of LN tolerance underlying the wild barley at transcriptional level. RESULTS: In this study, we employed Illumina RNA-Sequencing to determine the genotypic difference in transcriptome profile using two Tibetan wild barley genotypes differing in LN tolerance (XZ149, tolerant and XZ56, sensitive). A total of 1469 differentially expressed genes (DEGs) were identified in the two genotypes at 6 h and 48 h after LN treatment. Genetic difference existed in DEGs between XZ149 and XZ56, including transporters, transcription factors (TFs), kinases, antioxidant stress and hormone signaling related genes. Meanwhile, 695 LN tolerance-associated DEGs were mainly mapped to amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and involved in transporter activity, antioxidant activities, and other gene ontology (GO). XZ149 had a higher capability of N absorption and use efficiency under LN stress than XZ56. The higher expression of nitrate transporters and energy-saving assimilation pattern could be attributed to its more N uptake and higher LN tolerance. In addition, auxin (IAA) and ethylene (ETH) response pathways may be also related to the genotypic difference in LN tolerance. CONCLUSION: The responses of XZ149 and XZ56 to LN stress differed dramatically at transcriptional level. The identified candidate genes related to LN tolerance may provide new insights into comprehensive understanding of the genotypic difference in N utilization and LN tolerance.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Hordeum/genética , Perfilación de la Expresión Génica , Genotipo , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Nitrógeno/metabolismo , Estrés Fisiológico , Tibet
16.
J Proteomics ; 126: 1-11, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26021476

RESUMEN

In previous studies, we found Tibetan wild barley accessions with high tolerance to low K. In this study, ionomics and proteomics analyses were done on two wild genotypes (XZ153, tolerant and XZ141, sensitive), and a cultivar (B1031, tolerance to low K) to understand the mechanism of low-K tolerance. XZ153 was much less affected by low K stress than the other two genotypes in plant biomass and shoot K content. A total of 288 differentially accumulated proteins were identified between low-K and normal K treated plants. Among them, 129 proteins related to low-K tolerance were mainly involved in defense, transcription, signal transduction, energy, and protein synthesis. The analysis of tandem mass tag (TMT) detected 51 proteins which were increased in relative abundance under low K in XZ153, but unaltered or decreased in XZ141. The proteomics results showed that XZ153 is highly capable of rearranging ion homeostasis and developing an antioxidant defense system under low-K stress. Moreover, ethylene response and phenylpropanoid pathways could determine the genotypic difference in low-K tolerance. The current results confirmed the possibility of Tibetan wild barley providing low-K tolerant germplasm and identified some candidate proteins for use in developing the cultivars with low-K tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genotipo , Hordeum , Proteínas de Plantas , Potasio/metabolismo , Transcripción Genética , Hordeum/genética , Hordeum/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Tibet
17.
Ying Yong Sheng Tai Xue Bao ; 25(2): 433-40, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24830243

RESUMEN

Taking Yangmai 18, widely cultivated in south of Huaihe River, as experimental material, this study investigated the effects of application of 0, 30, 60, 90 and 120 m3 x hm(-2) pig farm slurry (PS) at the wintering stage combined with the application of 0, 30, 60, 90 kg x hm(-2) urea at the heading stage on medium- and micro-element contents and quality of wheat. The results showed that the Ca, Mg and Fe contents of plant firstly decreased then increased with the extension of the growth period, but the Cu, Zn and Mn contents decreased continuously through the growth period. Ca, Mg, Cu and Zn reached the highest value at every growth stage except the jointing stage when applying 120 m3 x hm(-2) PS with 90 kg x hm(-2) urea. Fe and Mn reached the highest value at every growth stage when applying 120 m3 x hm(-2) PS with 90 kg x hm(-2) urea. The contents of Ca, Mg, Cu, Zn, Fe and Mn all increased with increasing PS application across the growth period. Regarding the quality of wheat, applying 90 m3 x hm(-2) PS with 60 kg x hm(-2) urea was the best fertilization pattern. Combined applications of anaerobically treated PS with N fertilizer could increase medium- and micro-element contents and quality of wheat. Generally, it was recommended to apply 60-120 m3 x hm(-2) PS at the wintering stage and 90 kg x hm(-2) urea at the heading stage under field conditions.


Asunto(s)
Fertilizantes , Triticum/química , Triticum/crecimiento & desarrollo , Animales , Estiércol , Nitrógeno/análisis , Estaciones del Año , Porcinos , Urea/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...